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ABSTRACT OF THE DISSERTATION

Essays on Optimal Test for Markov Switching Parameters

by

Li Zhang

Doctor of Philosophy in Economics

Washington University in St. Louis, 2023

Professor Werner Ploberger, Chair

We propose a likelihood ratio test for fixed unit root against time switching unit root

models. Our test is different from the existing jump detection literature centered on the

application of various forms of Augmented Dickey-Fuller tests. Our methodology involves

the inclusion of random coefficients, which effectively capture both expansion and contraction

behaviors. We show that the contiguous alternatives converge to the null hypothesis at the

order of T−3/4, where T is the sample size. Our test is asymptotically optimal in the sense

that it maximizes a weighted power function. We derive the asymptotic distribution of our

test under the null and local alternatives.
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Chapter 1

Optimal test for stochastic unit root

with i.i.d shocks

This chapter studies an optimal test in the i.i.d case. We start from a likelihood ratio in

which the local alternatives are of the order T−3/4 . This is due to the fact that the regime

change ηt is unknown, and we first assume it to be an i.i.d with normal distribution.

1.1 Introduction

In this paper I propose an likelihood ratio test for identifying bubble behavior in a stochastic

unit root model. A bubble in asset prices can be characterized by an explosive surge in

prices series that significantly surpasses the fundamental values. The finance profession has

debated the possibility of bubbles from two main perspectives. Efficient market theory argues

that when price levels deviate from the true economics values, no arbitrage condition will

eventually force the prices back to the rational levels. On the other hand, behavior theory

suggest that investors make their decisions with irrational impulses leading to deviations in

prices. For instance, investors may base their decisions on past prices, assuming a continuous
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upward trend. Furthermore, the tendency to buy more intensifies when more people join the

market. By empirically testing the evidence, we can gain a deeper understanding of whether

there is evidence of bubble behavior and what characteristics it exhibits.

Using Bitcoin prices as an example, the cryptocurrency surged from 1,000 to its peak

at $20,000 in Dec 2017. During pandemic period, Bitcoin’s price burst into action once

again. Bitcoin took less than a month in 2021 to smash its 2020 price record, surpassing

$40,000 by Jan, 2021. By April, Bitcoin prices reached new all-time highs of over $60,000 as

Coinbase, a cryptocurrency exchange, went public. What’s the reasons for price to rise and

fall. Is it a rational bubble or behavior ones. There still are a lot different arguments for

that debate. Are those sudden jumps are results of a random walk or they do comes from

Figure 1.1: Time Series of Bitcoin from Nov 2015 to Nov 2023

explosive behavior. I consider a class of autoregressive models where the AR coefficient is

around 1. Following a common model used in the literature, we assume the data y1, y2, ..., yT ,
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are generated as

yt = θtyt−1 + ϵt

where θt can be written as 1+ ηt with ηt being the unobserved switching variable. ηt is time

varing. We assume that it would follow a Markov chain. If ηt is larger than 0 in some regimes

we allow for explosive behavior. If it is less than 0, that is the contraction. We want to test

the null hypothesis ηt = 1 against the alternative θt = 1 + ηt. The parameters driving the

dynamic of the underlying Markov chain are not identified under the null hypothesis. As a

result, the testing problem is nonstandard.

We believe that such a model is a better representation of the behavior of macroeconomic

aggregates compared to the conventional fixed unit root model. For instance, models with

fixed coefficients ignore the impacts that a succession of small and varied macroeconomic

shocks may have on the structure of appropriate dynamic economic models, especially when

applied to highly aggregated data series.Policy changes stand as a significant source of these

shocks. For example, Lucas Jr (1976) suggested that using a simultaneous equations model

for policy analysis and simulation is only valid when agent’s expectation rules are embedded

in its functional form since they are supposed to change with the changes in policy. And he

used rational expectation equilibrium (REE) framework in which this property is satisfied

by the expectation rules.

Likewise, the emergence of these shocks raises doubts about the time-invariant structures

of unit roots. This issue has been explored in prior studies by Leybourne et al. (1996) and

Granger and Swanson (1997), falling within the realm of stochastic unit root analysis. Itâs

argued that stochastic unit root models provide a better description of the behavior of

macroeconomic variables than fixed-unit-root models since they allow more general forms of

nonstationarity.
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As noted by Granger and Swanson (1997), augmented Dickey Fuller tests lack power to

detect a variety of processes in the category of stochastic unit root. So specification tests are

proposed. In Leybourne et al. (1996), they make the assumption that the AR coefficients are

independent and identically distributed (i.i.d. thereafter) around mean 1 with some variance

σ2. They proposed to use a LM test for the null hypothesis of σ2 = 0. This method was

applied to several U.S. macroeconomic series widely believed to contain fixed unit roots.

They found that for about half of the series the fixed-unit-root null is rejected.

Some people suggest to use a threshold model to capture the deviation of the series

from unit root. For example, Caner and Hansen (2001) introduced a two-regime threshold

autoregressive (TAR) model incorporating an autoregressive unit root. Inspired by the classic

work of Hamilton (1989), our model is different to the existing literature on stochastic unit

roots or threshold unit roots in that we assume the AR coefficients are driven by some

unobserved Markov chain , allowing for a comprehensive exploration of correlations. Our

model is different to the TAR model since we donât assume the regimes are observable.

And there is no direct economic theory to justify the observable regimes. Moreover, our

model deviates from prevailing literature on stochastic unit roots where assumptions either

completely specify the dynamics of random coefficients or merely assume i.i.d. coefficients.

Our likelihood ratio test originate from Carrasco et al. (2014), (CHP thereafter), where

fourth order Taylor expansion of the likelihood ratio are obtained. We modify the assumption

that latent variable is stationary to be nonstationary.

The remainder of the paper is organized as follows. The model is described in Section 2.

We also characterize likelihood ratio and the formula for our test statistics in this section.

Limiting distribution is studied in Section 3. Asymmetric case in ηt is analyzed in section 4.

We conclude in Section 5. All the proofs are relegated in the Appendix.
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1.2 The Model

We build a basic time series model:

yt = θtyt−1 + ϵt

where ϵt ∼ N(0, σ2) Here, we test the null with a fixed unit root against a stochastic root,

namely

H0 : θt = θ0 = 1

against

H1 : θt = 1 + ηt

where ηt is the unobservable switching variable, and ηt is a homogeneous Markov chain; ηt

could be greater than one, such that is shows explosive behavior on certain regimes. If it is

less than one, there is contraction.

The conditional density of yt is

ft(θ) =
1√
2πσ

e−
(yt−θtyt−1)

2

2σ2 .

Let Qβ
T denote the joint distribution of (η1, ..., ηT ). β would be σ2 in our symmetric case.

The ratio would be

lt =

∫ T∏
t=1

ft(θt)dQ
η
T/

T∏
t=1

ft(θ0)

= Eβ

[ T∏
t=1

e
−η2t y

2
t−1

2σ2 e
(yt−yt−1)ηtyt−1

σ2
]
.
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If the null hypothesis is true, the ratio would be

Eβ

[ T∏
t=1

e−
η2t y

2
t−1

2σ2 e
ϵtηtyt−1

σ2
]
.

If we assume ηt has the following binomial distribution

ηt =


r, p = 0.5

−r, q = 0.5

Our Log likelihood would be

ln lt = − r2

2σ2

T∑
t=1

y2t−1 + T ln(1/2) +
T∑
t=1

ln(e
r
σ2 ϵtyt−1 + e−

r
σ2 ϵtyt−1).

Considering the local alternative, ηt is around zero. Here the jump size is r, and we can

detect how large it is. Put it another way, what is the size of r such that our likelihood ratio

has a limit distribution?

Because r is small, we can apply a Taylor expansion to the third term in the equation

above. Expand to the fourth moment(according to CHP,only fourth moments matter) as

ln(ex + e−x) = ln(2) +
1

2
x2 − 1

12
x4 + o(x4)

where the likelihood ratio has the following form:

ln lt =
T∑
t=1

[
r2

2σ4
y2t−1(ϵ

2
t − σ2)− r4

12σ8
ϵ4ty

4
t−1

]
. (1.1)

We would like to analyze the asymptotic behavior of the likelihood ratio lt.

6



1.3 Limiting Distribution

In this section, we analyze the limiting distribution shown in (1.1). The main result is

presented in the beginning of the section and then proven in steps. The main theorem is as

follows:

Theorem 1. Our log likelihood ratio has the following limiting distribution:

ln lt
d−−→ c1

∫ 1

0

W 2
1 (t)dW2(t) + c2

∫ 1

0

W 4
1 (t)dt

where W1(t) and W2(t) are two standard Brownian Motions generated from ϵt and ϵ2t − σ2.

The proof of Theorem 1 is the main contribution of this paper, and the corresponding

limiting distributions would be

T∑
t=1

y2t−1(ϵ
2
t − σ2)

√
2σ4T 3/2

d−−→
∫

W1(t)
2dW2(t)

T∑
t=1

y4t−1

T 3

d−−→ σ4

∫
W 4

1 (t)dt.

Under the null, we have

yt = yt−1 + ϵt =
t∑

s=1

ϵs

where yt is an integrated or partial sum process. Because ϵt is IID, it derives from the central
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limit theorem, such that

1√
T
yT

d−−→ N(0, σ2). (1.2)

In (1.1), we need to consider the limiting distribution for the terms
∑

y2t ,
∑

yt−1ϵt. Both are

non-normal, and here, functional CLT serves our purpose. Any fixed fraction of the sample

has a corresponding limiting behavior. Therefore, let r denote any point of interval [0, 1];

then [Tr] denotes the largest integer not exceeding Tr. Therefore, (1.2) can be generalized

to

1√
T
y[Tr]

d−−→ N(0, rσ2).

Observe that

YT (r) =
1

σ
√
T
y[Tr],

which defines a discontinuous function.

Theorem (Functional Central Limit Theorem). Suppose that ϵt ∼ iid(0, σ2), and the stochas-

tic process Yt is defined by

YT (r) =
1

σ
√
T

[Tr]∑
t=1

ϵt. (1.3)

Then YT
d−−→ W , where W is a standard Wierner process.

For a multivariate vector case, the limit processes are the vector Wierner process W
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where

YT (t) =
1

σ
√
T
y[Tt] +

(
Tt− [Tt]

) 1

σ
√
T
ϵ[Tt]+1.

Because σ2 < ∞, XT (t) weakly converges to a standard Brownian motion via the functional

central limit theorem. The corresponding multivariate functional central limit theorem would

be

YT (t) = Σ−1/2
( 1√

T
y[Tt] +

(
Tt− [Tt]

) 1√
T
ϵ[Tt]+1

)
d−−→ W(t),

where W(t) is a standard Brownian motion process on R2. In our case, let

ϵj =

ϵ1j

ϵ2j

 =

 ϵj

ϵ2j − σ2


with the variance matrix

Σ =

σ2 0

0 2σ4



YT (t) = Σ−1/2
( 1√

T

[Tt]∑
j=1

ϵj +
(
Tt− [Tt]

) 1√
T
ϵ[Tt]+1

)
d−−→ W(t),

namely,

 1
σ

0

0 1√
2σ2

 1√
T

 ∑[Tt]
j=1 ϵj +

(
Tt− [Tt]

)
ϵ[Tt]+1∑[Tt]

j=1(ϵ
2
j − σ2) +

(
Tt− [Tt]

)
(ϵ2[Tt]+1 − σ2)

 d−−→

W1(t)

W2(t)

 .

Let

Y1T (t) =

[Tt]∑
j=1

ϵj +
(
Tt− [Tt]

)
ϵ[Tt]+1

Y2T (t) =

[Tt]∑
j=1

(ϵ2j − σ2) +
(
Tt− [Tt]

)
(ϵ2[Tt]+1 − σ2).

9



Therefore, we have  1
σ
√
T
Y1T (t)

1
σ2

√
2T
Y2T (t)

 d−−→

W1(t)

W2(t)

 .

By definition of Y1T (t) and Y2T (t), yi−1 = Y1T (
i−1
T
), Y2T (

i
T
)− Y2T (

i−1
T
) = ϵ2i − σ2

T∑
t=1

y2t−1(ϵ
2
t − σ2) =

T∑
i=1

Y 2
1T (

i− 1

T
)
[
Y2T (

i

T
)− Y2T (

i− 1

T
)
]
.

Let

GT =
T∑
i=1

Y 2
1T (

i− 1

T
)
[
Y2T (

i

T
)− Y2T (

i− 1

T
)
]
.

Lemma 1. Let YT (r) be defined as in (1.3) and XT (r) defined similarily with respect to the

partial sum xt =
∑t

s=1ws and ws ∼ iid(0, σ2
w). Here, (wt, σt) are serially independent. If

(XT , YT )
d−−→ (WX ,WY ), then

G∗
T =

k(T )−1∑
j=0

XT (rj)(YT (rj+1)− YT (rj))

where r0, ..., rk(T ) is a nested sequence of partition. Then, k(T ) → ∞ as T → ∞ and

min
0<j<k(T )

|rj+1 − rj| → 0.

Then we have

G∗
T

d−−→
∫ 1

0

WXdWY .

Proof. The Skorokhod representation theorem states that a weakly convergent sequence of

probability measures whose limit measure is sufficiently well-behaved can be represented as

10



the distribution of a pointwise convergent sequence of random variables defined on a common

probability space. Thus, there exists a sequence of random processes (XT , Y T ) converging

almost surely to (WX ,WY ) in terms of Skorokhod topology. By definition of the Ito integral,

if G∗T is constructed in the same way except in terms of (XT , yT ), then

∣∣∣∣G∗T −
∫ 1

0

WXdWY

∣∣∣∣ p−−→ 0.

Convergence in probability implies convergence in distribution. G∗T and G∗
T have the same

distribution by construction.Then, we are left to show that the differences between GT and

G∗
T can be neglectable. Define Tj = [Trj]

YT (rj)− YT (rj−1) =
1

σϵ

√
T

Tj−1∑
t=Tj−1

ϵt

XT (rj) =
1

σw

√
T

Tj−1∑
i=0

wTj−i.

Thus,

GT −G∗
T =

1

σϵσwT

k(T )∑
j=1

 Tj−1∑
t=Tj−1

Tj−1∑
i=0

ϵt−iwt+1 −
Tj−1∑
i=0

ϵTj−i

Tj−1∑
t=Tj−1

wt+1


=

1

σϵσwT

k(T )∑
j=1

Tj−1∑
t=Tj−1+1

t−Tj−1−1∑
i=0

ϵt−i

wt+1.

11



If we recall that ϵt, wt are serially independent, we can compute the variance

E(GT −G∗
T )

2 =
1

σ2
ϵσ

2
wT

2

k(T )∑
j=1

Tj−1∑
t=Tj−1+1

E

t−Tj−1−1∑
i=0

ϵt−i

2

E(wt+1)
2

=
1

T 2

Tj−1∑
t=Tj−1+1

(t− Tj−1)

≤ 1

T 2

k(T )∑
j=1

(Tj − Tj−1)
2

= O

(
max

1≤j≤k(T )
|rj − rj−1|

)
= o(1)

where we obtain convergence in the probability.

Lemma 2. In our case, ϵt, wt are ϵt, ϵ
2
t − σ2, plim(GT −G∗

T ) = 0.

Proof. In our case, random processes (ϵt, wt) are (ϵt, ϵ
2
t − σ2),

plim(GT −G∗
T ) =

1
√
ωϵϵωww

∑
i=1

E(ϵ1−iw1) = 0.

Using lemmas 1 and 2 and the continuous mapping theorem, we obtain the following

results:

Proposition 1.

T∑
t=1

y2t−1(ϵ
2
t − σ2)

√
2σ4T 3/2

d−−→
∫

W1(t)
2dW2(t)

12



Proposition 2.

T∑
t=1

y4t−1

T 3

d−−→ σ4

∫
W 4

1 (t)dt

Proposition 3.

1√
96σ4T 5/2

T∑
t=1

y4t−1(ϵ
4
t − 3σ4)

d−−→
∫

W 4
1 (t)dW3(t)

where W1(t) and W3(t) are two independent standard Brownian motions.

Proof. Let

X∗
T (t) =

1

σ
√
T
y[Tr];

FCLT imples that X∗
T (t) converges weakly to Brownian motion W1(t). Considering that

function ST (t) is given by

ST (t) =
[
X∗

T
4(t)
]
,

it follows that ∫ 1

0

ST (r)dr =
1

σ4T 3

T∑
t=1

y4t−1.

By the continuous mapping theorem

1

σ4T 3

T∑
t=1

y4t−1
d−−→
∫ 1

0

W 4
1 (t)dt.

Similarly,

1√
96σ4T 5/2

T∑
t=1

y4t−1(ϵ
4
t − 3σ4)

d−−→
∫

W 4
1 (t)dW3(t).

13



For the second term of the loglikelihood ratio,

T∑
t=1

ϵ4ty
4
t−1 =

T∑
t=1

(ϵ4t − Eϵ4t + Eϵ4t )y
4
t−1

=
T∑
t=1

(ϵ4t − 3σ4)y4t−1 + 3σ4

T∑
t=1

y4t−1.

If r has the order of 1
T 3/4 , we can detect the jump, and the limit distribution would be

ln lt
d−−→

√
2

2

∫ 1

0

W 2
1 (t)dW2(t)−

1

4

∫ 1

0

W 4
1 (t)dt.

Here, we complete the proof of the main theorem.

Our test can tell us whether yt has an explosive root, which can help describe certain

series. The estimation of r and how large of a jump we can detect is our main concern.

These questions can be tackled with the Bayesian reference.

1.4 Asymmetric Case

In this section, we analyze the asymmetric case in which the jump size is different for the

explosion and contraction. For an asymmetric case, we assume that ηt has the following

binomial distribution:

ηt =


a, p

b, q

where ab+ pq = 0, p+ q = 1

ln lt =
T∑
1

ln

(
pe

2aϵtyt−1−a2y2t−1

2σ2 + qe
2bϵtyt−1−b2y2t−1

2σ2

)
.
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Let x = e
a2y2t−1−2aϵtyt−1

2σ2 , y = e
b2y2t−1−2bϵtyt−1

2σ2 , ln lt =
∑

ln(pex + qey).

Take the Taylor expansion to the fourth moment when x, y are relatively small. We then

obtain

ln(pex1 + qex2) ≈ qy +
pq

2
y2 +

pq(p− q)

6
y3 +

pq(p2 − 4pq + q2)

24
y4

+ px+
pq

2
x2 − pq(p− q)

6
x3 +

pq(p2 − 4pq + q2)

24
y4

− pqxy +
pq(p− q)

2
xy2 − pq(p2 − 4qp+ q2)

6
xy3

+
pq(p− q)

2
x2y +

pq(p2 − 4qp+ q2)

4
x2y2 − pq(p2 − 4pq + q2)

6
x3y.

That is

ln lt ≈
T∑
t=1

[
(
ap+ bq

σ2
)ϵtyt−1 − (

a2p+ b2q

2σ2
)y2t−1 +

pq

8σ4
(a2 − b2)2y4t−1

− pq

2σ4
(a3 − a2b− ab2 + b3)ϵty

3
t−1 +

pq

2σ4
(a− b)2ϵ2ty

2
t−1

+
pq(p− q)

4σ6
(a2 − b2)(a− b)2ϵ2ty

4
t−1 +

pq(p2 − 4pq + q2)

24σ8
(a− b)4ϵ4ty

4
t−1

]
.

We can rewrite it as

ln lt ≈
T∑
t=1

[
(
ap+ bq

σ2
)ϵtyt−1 −

(ap+ bq)2

2σ2
y2t−1 +

pq

2σ4
(a− b)2(ϵ2t − σ2)y2t−1

+
[pq
84

(a2 − b2)2 + (a− b)4
pq(p2 − 4pq + q2)

8σ4
+

pq(p− q)

4σ4
(a2 − b2)(a− b)2

]
y4t−1

+
pq(p2 − 4pq + q2)

24σ8
(a− b)4(ϵ4t − 3σ4)y4t−1 +

pq(p− q)

4σ6
(a2 − b2)(a− b)2(ϵ2t − σ2)y4t−1

− pq

2σ4
(a3 − a2b− ab2 + b3)ϵty

3
t−1

]
.

Because ap + bq = 0, the first and second terms vanish. We can derive the limit distri-

butions for the third and fourth terms if a and b have the order 1
T 3/4 as proposition 1 and 2.
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The fifth, sixth and seventh terms vanish if a and b have that order by FCLT. To be more

precise,

1√
2σ6T 5/2

T∑
t=1

(ϵ2t − σ2)y4t−1 → σ4

∫ 1

0

W 4
1 (t)dt

1

σ4
T 2

T∑
t=1

ϵty
3
t−1 →

∫ 1

0

W 3
1 (r)dW1(r).

The limiting distribution for ln lt should be

ln lt → c1

∫ 1

0

W 2
1 (t)dW2(t) + c2

∫ 1

0

W 4
1 (t)dt.

1.5 Concluding Remarks

We propose a new likelihood ratio test against Markov switching unit root models. This

test applies to a wide range of models that are popular in macroeconomics and finance. It

is simple to implement, as it requires only the estimation of the parameters under the null

hypothesis of constant parameters. The testing problem is challenging due to nonstationarity.

We derive the limiting distribution with i.i.d case.
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Chapter 2

Optimal test for Markov dynamics

In recent years, the field of econometrics has seen the development of various tools designed

to test for the existence of financial bubbles. These tests carry significant practical implica-

tions, because their detection can impact a wide range of stakeholders, including investors,

portfolio managers, regulators, and policymakers. Identifying the presence of financial bub-

bles is crucial for taking appropriate countermeasures. With Markov dynamics in our jump

parameter η, our model should better capture the market changes. The parameters driving

the dynamic of the underlying Markov chain are not identified under the null hypothesis.

As a result, the testing problem is nonstandard. We believe that such a model is a better

representation of the behavior of prices series than the usual fixed unit root model.

2.1 Introduction

In this paper we concentrate on the likelihood ratio test with Markov switching. We assume

the data are generated as

yt = αtyt−1 + ϵt

17



where αt could be written as 1 + ηt with ηt being the unobserved switching variable. ηt is

assumed to be Markov. We want to test the null hypothesis αt = 1 against αt = 1 + ηt.

ηt could be greater than zero, that is, we allow for explosive behavior in some regimes. If

ηt is lower than zero, contraction is obtained. We believe that such a model is a better

representation of the behavior of prices series than the usual fixed unit root model.For

instance, models with fixed coefficients ignore the effects that a succession of small and

varied macroeconomic shocks may have on the structure of appropriate dynamic economic

models.A main source of these shocks is policy change.And people have noticed this problem

long ago.For example,in his famous 1976 paper,Lucas suggested that using a simultaneous

equations model for policy analysis and simulation is only valid when agent’s expectation

rules are embedded in its functional form since they are supposed to change with the changes

in policy. And he used rational expectation equilibrium framework in which this property is

satisfied by the expectation rules.

Few research papers have proposed tests for Markov switching. Garcia (1998) examined

the asymptotic distribution of a likelihood ratio test of the sup-type. Similarly, (Hansen,

1992) approached the problem by considering likelihood as an empirical process with pa-

rameters as indices and based his test on the supremum of the likelihood ratio over nuisance

parameters. Both of these approaches entail estimating the model under alternative scenar-

ios, which can be quite labor-intensive. Surprisingly, neither of these studies investigates

local statistical power.

Gong et al. (1997) took a different approach by reparameterizing their linear model in the

frequency domain. They devised a test that relied on differences in the spectrum between

null and alternative hypotheses. On a Bayesian front, Kim and Nelson (2001) proposed a

model selection procedure for Markov switching.

The remainder of the paper is organized as follows. The model is described in Section 2.

We also characterize likelihood ratio and the formula for our test statistics in this section.
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Taylor expansion of likelihood is studied in Section 3. We derive the limit distribution in

section 4. We conclude in Section 5. All the proofs are relegated in the Appendix.

2.2 Model depscription

For the Markov case we need to integrate with all the states. We assume that ηt is a

three-states Markov chain with a 3× 3 transition matrix as shown below:

P =


p11 p12 p13

p21 p22 p23

p31 p32 p33.


The three states are:

ηt =


a, State1

0, State2

b, State3.

.

The sample is split into blocks, where a BN block has length B(T ) , and i is the index

for block i = 1, ..., BN . We decompose the sum as follows:

T∑
t=1

=

BN∑
i=1

iB(T )∑
t=(i−1)B(T )+1

.

Our analysis relies on the derivatives of the logarithm of the likelihood function. We denote

the conditional parametric densities as ft(θt), which are functions of the parameter vector
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described in the Markov process. As in Chapter 1, we obtain the likelihood ratio as

LQ
t =

∫ T∏
t=1

ft(θt)dQ
η
T/

T∏
t=1

ft(θ0)

=

∫
e
− 1

2σ2

T∑
t=1

[yt−(1+ηt)yt−1]2

dQη
T/e

− 1
2σ2

T∑
t=1

(yt−yt−1)2

= Eη(
T∏
t=1

e
1
σ2∆ytηtyt−1− 1

2σ2 η
2
t y

2
t−1).

For now we assume that σ = 1.

The main difference with CHP is that here the local alternatives are of order T−3/4 Let

Gi =

iB(T )∑
t=(i−1)B(T )+1

1
4
√
T
∆yt

yt−1√
T
ηt −

1

2
√
T

y2t−1

T
η2t .

Our local likelihood would be

L = Eη

[
exp

BN∑
i=1

Gi

]
.

Let

ci = −logEη[expGi|Fi−1].
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Thus

E

[
T∏
i=1

(exp(Gi)exp(ci))

]
= E

[
E

(
T∏
i=1

exp(Gi)exp(ci)

∣∣∣∣FT−1

)]

= E

[
T−1∏
i=1

exp(Gi)exp(ci)E (exp(GT )exp(cT )|FT−1)

]

= E

[
T−1∏
i=1

exp(Gi)exp(ci)

]
...

= 1 (2.1)

First equation is the result of law of iterated expectation and the second one is due to the

construction of ci.

Proposition 1. There exists c′i which is irrelevant to η such that

∑
i

c′i/
∑
i

ci
p−−→ 1.

and
∑

i c
′
i coverge to constant in probability on some set AT such that lim

T→∞
P (AT ) = 1 where

AT is FT measurable and independent of η

The following lemma in CHP is used in the proof of Proposition 1

Lemma 1. Assume that for any ϵ > 0, we can find 1− ϵ ≤ fT
fT ∗ ≤ 1 + ϵ on some set Aϵ

T so

that lim
T→∞

P (Aϵ
T ) = 1 where Aϵ

T is FT measurable and independent of η. Then E(fT |FT )
E(f∗

T |FT )

P−→ 1

Along the lines of CHP, we can use the taylor expansion to approximate likelihood ratio

on some set with probability one.
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2.3 Taylor Expansion of likelihood

For each ci, taking taylor expansion at the fourth order, we obtain

Eη(expGi|Fi−1) = Eη

[
1 +Gi +

1

2
G2

i +
1

6
G3

i +
1

24
G4

i +
1

5!
G∗5

i

∣∣∣∣Fi−1

]
. (2.2)

Let

a =

iB(T )∑
t=(i−1)B(T )+1

1
4
√
T
∆yt

yt−1√
T
ηt

b =

iB(T )∑
t=(i−1)B(T )+1

−1

2
√
T

y2t−1

T
η2t

According to the definition of Gi,

1 +Gi +
1

2
G2

i +
1

6
G3

i +
1

24
G4

i = 1 + (a+ b) +
1

2
(a+ b)2 +

1

6
(a+ b)3 +

1

24
(a+ b)4

= 1 + a+ b+
1

2
a2 + ab+

1

2
b2 +

1

6
a3 +

1

2
a2b+

1

2
ab2 +

1

6
b3

+
1

24
a4 +

1

6
a3b+

1

4
a2b2 +

1

6
ab3 +

1

24
b4.

We obtain 14 terms in the form of a and b. The next step is to evaluate that each term a

and b are clear as above. Let the second order

a2 =
∑
Bi

1√
T
(∆yt)

2y
2
t−1

T
η2t +

∑
k ̸=j

1√
T
∆yk

yk−1√
T
∆yj

yj−1√
T
ηkηj.
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Taking conditional expectation, Term 3

Eη
1

2
a2 =

∑
Bi

1

2
√
T
(∆yt)

2y
2
t−1

T
E(η2t |Fi−1) +

∑
k ̸=j

1

2
√
T
∆yk

yk−1√
T
∆yj

yj−1√
T
E(ηkηj|Fi−1)

We know η is exponentially decayed in our Markov case. If we replace the conditional

expectation, given that Fi−1 with an unconditional expectation, the differences between them

would be neglectable. Term 3 can be written as

E
1

2
a2 =

∑
Bi

1

2
√
T
(∆yt)

2y
2
t−1

T
Eη2t +

∑
k

1√
T
∆yk

yk−1√
T

∑
j<k

∆yj
yj−1√
T
E(ηkηj).

We can do the same thing for the remaining terms. The results are listed as follows.

Term 4 (ab)

Eab =
∑
Bi

1

2
√
T 4
√
T
∆yt

yt−1√
T

y2t−1

T
Eη3t +

∑
k ̸=j

−1

2
√
T 4
√
T
∆yk

yk−1√
T

y2j−1

T
E(ηkη

2
j )

Following Lemma 1 shows that third moment would vanish:

Lemma 2. Under our assumptions for ηt,

∑
i

∑
Bi

1

2
√
T 4
√
T
∆yt

yt−1√
T

y2t−1

T
Eη3t

p−−→ 0.

Proof : We can see that ∆yt,
yt−1√

T
,
y2t−1

T
all have the order of 1. The magnitude of variance

for the sum would be O(T−1.5×Blocksize×constant). In the logL we sum all the blocks the

maginitude would be O(T−0.5 × constant) Convergence in mean square implies convergence

in probability.
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Lemma 3.

∑
i

∑
k inBi

1

2 3/4
√
T
∆yk

yk−1√
T

∑
j<k

y2j−1

T
ηkη

2
j

p−−→ 0

Proof : As η is exponentially decayed, we have

|Eηkη
2
j | < |λk−jη3j |.

so
∑

j<k

y2j−1

T
ηkη

2
j exists. Hence, the sums are (as a product of a martingale difference se-

quence with terms determined in the past)are m.d.s. Again, we can calculate the variance

of each term like we did in Lemma 1, where the magnitude would be O(T−0.5 × constant.)

Therefore, it converges to zero in probability. For the case j > k, we can switch index.

Hence, Term 4 vanish, and we obtain the following proposition:

Proposition 2.

∑
Bi

1

2
√
T 4
√
T
∆yt

yt−1√
T

y2t−1

T
Eη3t +

∑
k ̸=j

−1

2
√
T 4
√
T
∆yk

yk−1√
T

y2j−1

T
E(ηkη

2
j )

p−−→ 0

Term 5 (1
2
b2)

E
1

2
b2 =

1

2

∑ 1

4T

y4t−1

T 2
Eη4t +

∑
k

1

4T

y2k−1

T

∑
j<k

y2j−1

T
Eη2kη

2
j
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Term 6 (1
6
a3)

E
1

6
a3 =

1

6

∑
t

1

T 3/4
(∆yt)

3

(
yt−1√
T

)3

Eη3t

+
1

2

∑
k

1
4
√
T
∆yk

yk−1√
T

∑
j<k

1√
T
(∆yj)

2
y2j−1

T
Eη2j ηk

+
1

2

∑
k

1
4
√
T
∆yk

yk−1√
T

∑
j>k

1√
T
(∆yj)

2
y2j−1

T
Eη2j ηk

+
∑
l<j<k

(
1

4
√
T

)3

∆yl∆yj∆yk
yl−1√
T

yj−1√
T

yk−1√
T
Eηlηjηk

Following Lemmas 1 and 2, the first three lines converge to zero. Looking at the last term,

we obtain

Lemma 4.

∑
i

∑
l<j<k

(
1

4
√
T

)3

∆yl∆yj∆yk
yl−1√
T

yj−1√
T

yk−1√
T
Eηlηjηk

p−−→ 0

Proof : the sum can be written as

∑
k

(
1

4
√
T

)3

∆yk
yk−1√
T

∑
j<k

∆yj
yj−1√
T

∑
l<j

∆yl
yl−1√
T
.

Again, the variance is bounded, and
∑

l<j,
∑

j<k are terms in the "past" sums are m.d.s

Hence, our assumption for exponential mixing guarantees convergence to zero in mean square.

Thus, we have the following proposition:

Proposition 3. If η is exponentially mixing, all the third order term in the log likelihood

Taylor expansion converge to zero in probability.
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Term 7 (1
2
a2b)

E
1

2
a2b =

1

2

∑ −1

2T
(∆yt)

2y
4
t−1

T 2
Eη4t +

∑
k ̸=j

−1

2T
(∆yk)

2y
2
k−1

T

y2j−1

T
Eη2kη

2
j

+
1

2

∑
j ̸=k,l

−1

2T
∆yj

yj−1√
T
∆yk

yk−1√
T

y2l−1

T
Eηjηkη

2
l

Term 8 (1
2
ab2)

E
1

2
ab2 =

1

2

∑
l,k

1

4T 4
√
T
∆yl

yl−1√
T

y4k−1

T 2
Eηlη

4
k

+
1

2

∑
k ̸=j,l

1
4
√
T
∆yl

yl−1√
T

1

4T

y2k−1

T

y2j−1

T
Eη2kη

2
j ηl

Lemma 5. Term 8 converges to zero in probability.

Proof : ∆yl
yl−1√

T

y4k−1

T 2 are all of order 1, and Eηlη
4
k is exponentially decayed. Following

Lemma 1, it would vanish. So does the the second sum. We have the following proposition:

Proposition 4. If η is exponentially decayed, all the fifth order terms in the log likelihood

Taylor expansion converge to zero in probability.

Term 9 (1
6
b3)

E
1

6
b3 =

1

6

∑
Bi

−1

8T
√
T

y6t−1

T 3
Eη6t

+
1

2

∑
j ̸=k

y4j−1

T 2

−1

8T
√
T

y2k−1

T
η4j η

2
k

+
∑
l<j<k

−1

8T
√
T

y2l−1y
2
j−1y

2
k−1

T 3
Eη2l η

2
j η

2
k
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Proposition 5. If η is exponentially decayed, all the sixth and higher order terms in the log

likelihood Taylor expansion converge to zero in probability.

Proof : y6t−1

T 3 ,
y2k−1

T
,
y2l−1y

2
j−1y

2
k−1

T 3 are all of order 1. Mean square of term 9 would converge to

zero in probability. Note that there is no exponential decay in sixth order.

Term 10 ( 1
24
a4)

E
1

24
a4 =

1

24

∑
Bi

1

T
(∆yt)

4y
4
t−1

T 2
Eη4t

+
1

6

∑
j ̸=k

1

T
(∆yj)

3(
yj−1√
T
)3∆yk

yk−1√
T
Eη3j ηk

+
1

4

∑
j<k

1

T

(
∆yj

yj−1√
T

)2(
∆yk

yk−1√
T

)2

Eη2j η
2
k

+
1

2

∑
l<j<k

1

T

(
∆yl

yl−1√
T

)2(
∆yj

yj−1√
T

)(
∆yk

yk−1√
T

)
Eη2l ηjηk

+
1

2

∑
l<j<k

1

T

(
∆yl

yl−1√
T

)(
∆yj

yj−1√
T

)2(
∆yk

yk−1√
T

)
Eηlη

2
j ηk

+
1

2

∑
l<j<k

1

T

(
∆yl

yl−1√
T

)(
∆yj

yj−1√
T

)(
∆yk

yk−1√
T

)2

Eηlηjη
2
k

+
∑

l<j<k<m

1

T

(
∆yl

yl−1√
T

)(
∆yj

yj−1√
T

)(
∆yk

yk−1√
T

)(
∆ym

ym−1√
T

)
Eηlηjηkηm

Term 11 (1
6
a3b)

E
1

6
a3b = E

1

6

∑
l,j,k,m

(
1

4
√
T
∆yl

yl−1√
T
ηl

)(
1

4
√
T
∆yj

yj−1√
T
ηj

)(
1

4
√
T
∆yk

yk−1√
T
ηk

)(
−1

2
√
T

ym−1

T
η2m

)
= −1

6

∑
l,j,k,m

1

T 3/4
∆yl

yl−1√
T
∆yj

yj−1√
T
∆yk

yk−1√
T

y2m−1

2T
√
T
Eηlηjηkη

2
m

Proposition 6. If η is exponentially decayed, Term 11 in the log likelihood Taylor expansion

converge to zero in probability.
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Term 12 (1
4
a2b2)

Term 12 = 1
4
(Term 4)2. According to Proposition 1 Term 12 converge to zero in probability.

Term 13 (1
6
ab3)

E
1

6
ab3 = E

1

6

∑
l,j,k,m

(
1

4
√
T
∆yl

yl−1√
T
ηl

)(
−1

2
√
T

y2j−1

T
η2j

)(
−1

2
√
T

y2k−1

T
η2k

)(
−1

2
√
T

y2m−1

T
η2m

)

= − 1

48

∑
l,j,k,m

1

T 7/4
∆yl

yl−1√
T

y2j−1

T

y2k−1

T

y2m−1

T
Eηlη

2
j η

2
kη

2
m

Proposition 7. If η is exponentially decayed, Term 13 in the log likelihood Taylor expansion

converge to zero in probability.

Term 14 ( 1
24
b4)

E
1

24
b4 = E

1

24

∑
l,j,k,m

(
−1

2
√
T

y2l−1

T
η2l

)(
−1

2
√
T

y2j−1

T
η2j

)(
−1

2
√
T

y2k−1

T
η2k

)(
−1

2
√
T

y2m−1

T
η2m

)

=
1

384T 2

∑
l,j,k,m

y2l−1

T

y2j−1

T

y2k−1

T

y2m−1

T
Eη2l η

2
j η

2
kη

2
m

Proposition 8. If η is exponentially decayed, Term 14 in the log likelihood Taylor expansion

converge to zero in probability.

2.4 Limit Distribution

The remaining parts in logL would be second order and fourth order. Fourth order should

compensate. The Taylor series expansion for log(1+x) informs that the fourth order are

exactly −1
2

square of the second order. Then, we have

Proposition 9. The fourth order compensates for the second order in the Taylor expansion
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of log likelihood

To be more specific, we plug in σ,where the second order in LogL would be

BN∑
i=1

(∑
Bi

1

σ4

1

2
√
T

y2t−1

T
[(∆yt)

2 − σ2]Eη2t +
∑
k

1

σ4
√
T
∆yk

yk−1√
T

∑
j<k

∆yj
yj−1√
T
Eηkηj

)
(2.3)

=
∑
t

1

σ4

1

2
√
T

y2t−1

T
[(∆yt)

2 − σ2]Eη2t +
∑
t

1

σ4
√
T
∆yt

yt−1√
T

∑
j<t

∆yj
yj−1√
T
Eηtηj. (2.4)

Our main aim would be the asymptotic behavior of LogL in this Markov situation.

Theorem 1. Under H0, the limit distribution for the second order would be

√
2

∫
W 2

1 (t)dW2(t)Eη2t + L

∫
W1(t)

2dW3(t)Eηtηt−s.

Here L is finite.

Theorem 1 is our main contribution to Markov dynamics. The following proposition

shows the asymptotic behavior for the first sum in (2.2):

Under H0, we have

∑
t

1

σ4

1

2
√
T

y2t−1

T
[ϵ2t − σ2]Eη2t −→

√
2

∫
W 2

1 (t)dW2(t)Eη2t (2.5)

which is exactly proposition 1 in Chapter 1.

Lemma 6.

plim

∣∣∣∣∣∑
t

1

σ4
√
T
∆yt

yt−1√
T

∑
j<t

∆yj
yj−1√
T
Eηtηj −

∑
t

1

σ4
√
T
∆yt

yt−1√
T

U∑
s=1

∆yt−s+1
yt−s√
T
Eηtηj

∣∣∣∣∣ = 0

Proof When j is very different from t, |Eηtηj| < λ(t−j)Eη2j . Then, only finite j matters,

and s is finite from 1 to U .
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For each s, we have

∑
t

1

σ4
√
T
∆yt

yt−1√
T
∆yt−s

yt−s−1√
T

Eηtηt−s. (2.6)

Replace yt−1 with yt−1 = ϵt−1 + ϵt−2 + ...+ ϵt−s + yt−s−1, and we have

∑
t

1

σ4
√
T
∆yt

yt−1√
T
∆yt−s

yt−s−1√
T

Eηtηt−s (2.7)

=
∑
t

1

σ4
√
T
∆yt

(ϵt−1 + ...+ ϵt−s)√
T

∆yt−s
yt−s−1√

T
Eηtηt−s (2.8)

+
∑
t

1

σ4
√
T
∆yt

yt−s−1√
T

∆yt−s
yt−s−1√

T
Eηtηt−s. (2.9)

Lemma 7. Under H0,

∑
t

1

σ4
√
T
∆yt

(ϵt−1 + ...+ ϵt−s)√
T

∆yt−s
yt−s−1√

T
Eηtηt−s

p−−→ 0.

Proof : ∆yt = ϵt,where ϵi is uncorrelated with ϵj when i ̸= j. Again, yt−s−1 is a term in

the "past"; thus, m.d.s. The terms in (2.6) are all of order one. Mean square would converge

to zero, which completes the proof of Lemma 5.

Rewrite (2.7) as

∑
t

1

σ4
√
T
∆yt

yt−1√
T
∆yt−s

yt−s−1√
T

Eηtηt−s (2.10)

=
∑
t

1

σ4
√
T
ϵtϵt−s

y2t−s−1

T
Eηtηt−s. (2.11)

We follow the same methodology as in Chapter 1 to obtain the limiting distribution. Let

YT (t) =
1√
Tσ

y[Tt] +
(
Tt− [Tt]

) 1√
Tσ

ϵ[Tt]+1.
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Because σ2 < ∞, YT (t) weakly converges to a standard Brownian motion by FCLT. The

corresponding multivariate FCLT would be

YT (t) = Σ−1/2
( 1√

T
y[Tt] +

(
Tt− [Tt]

) 1√
T
ϵ[Tt]+1

)
d−−→ W(t).

where W(t) is a standard Brownian motion process on R2. In Markov dynamics,

ϵj =

ϵ1j

ϵ2j

 =

 ϵj

ϵjϵk


with the variance matrix

Σ =

σ2 0

0 σ4



YT (t) = Σ−1/2
( 1√

T

[Tt]∑
j=1

ϵj +
(
Tt− [Tt]

) 1√
T
ϵ[Tt]+1

)
d−−→ W(t)

namely,

 1
σ

0

0 1
σ2

 1√
T

 ∑[Tt]
j=1 ϵj +

(
Tt− [Tt]

)
ϵ[Tt]+1∑[Tt]

j=1(ϵjϵj+s) +
(
Tt− [Tt]

)
(ϵ[Tt]+1ϵ[Tt]+1+s)

 d−−→

W1(t)

W3(t)

 .

Let

Y1T (t) =

[Tt]∑
j=1

ϵj +
(
Tt− [Tt]

)
ϵ[Tt]+1

Y3T (t) =

[Tt]∑
j=1

(ϵjϵj+s) +
(
Tt− [Tt]

)
(ϵ[Tt]+1ϵ[Tt]+1+s)

Thus, we have  1√
Tσ

Y1T (t)

1√
Tσ2Y3T (t)

 d−−→

W1(t)

W3(t)


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By definition of Y1T (t) and Y3T (t), yi−1 = X1T (ϵiϵi+s =
i−1
T
), Y3T (

i
T
)− Y3T (

i−1
T
)

T∑
t=s+1

y2t−s−1(ϵtϵt−s) =
T∑
i=1

X2
1T (

i− 1

T
)
[
X3T (

i

T
)−X3T (

i− 1

T
)
]
.

Let

G′
T =

T∑
i=1

X2
1T (

i− 1

T
)
[
X3T (

i

T
)−X3T (

i− 1

T
)
]
.

Lemma 8.

G′
T

d−−→
∫
[σ
√
TW1(t)]

2d(
√
Tσ2)W3(t)

Proof : The Skorokhod representation theorem plays the same role here for Y1T , Y3T as it

did in Chapter 1. There exist sequences of random processes (Y 1T , Y 3T ) converge almost

surely to limit processes that are jointly distributed as
(√

TσW1(t),
√
Tσ2W3(t)

)
. If a random

variable G′T is constructed like G′
T in terms of the Skorokhod process

(
Y 1T , Y 3T

)
, then by

the definition of the Ito integral

∣∣∣∣G′T −
∫

[σ
√
TW1(t)]

2d(
√
Tσ2)W3(t)

∣∣∣∣ p−−→ 0.

Convergence in probability implies convergence in distribution, and G′
T and G′T have the

same distribution by construction. Thus,

Proposition 10.

1

σ4T
√
T

∑
t=s+1

ϵtϵt−sy
2
t−s−1

d−−→
∫

W1(t)
2dW3(t)
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(2.9) would be

1

σ4T
√
T

∑
t=s+1

ϵtϵt−sy
2
t−s−1Eηtηt−s

d−−→
∫

W1(t)
2dW3(t)Eηtηt−s

The Limiting distribution for the second order

√
2

∫
W 2

1 (t)dW2(t)Eη2t + L

∫
W1(t)

2dW3(t)Eηtηt−s.

2.5 Discussions and Concluding Remarks

This paper present a likelihood ratio test against Markov switching alternatives. This test

is applicable across a broad spectrum of models commonly utilized in the fields of macroe-

conomics and finance. Its implementation is straightforward. We fully exploit the Markov

property of the random coefficients. We derive the limiting distribution with Markov case.

2.6 Appendix

Proof of Proposition 1

Proof. Replace Eη(expGi|Fi−1) in ci with its first 4 Taylor expansion in (2.2), we obtain c′i.

Because of proposition 4-8, all the orders higher than 4 converge to zero in probability. Thus

we have

∑
i

c′i/
∑
i

ci
p−−→ 1.

Rewrite (2.1) as E
[∏T

i=1(exp(Gi)
exp(ci)
exp(c′i)

exp(c′i))
]
= 1. Along the lines in the appendix of

CHP, exp(ci)
exp(c′i)

can be taken out of the expectation on the some set with probability one.
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We can approximate likelihood ratio with 1∏T
i=1 exp(c

′
i)
. In section (2.4) we show the limit-

ing distribution of the 2nd order in Taylor expansion.
∑

c′i will converge to constant in

probability
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